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Abstract: In Cabo Verde, Acute Respiratory Infection caused by various pathogens was the
most reported condition in children under 5 years old between 2014-2020, and the fourth
leading cause of mortality in this age group, with Human Respiratory Syncytial Virus
(HRSV) being one of the main etiological agents. However, limited literature on the subject
hinders the study of its epidemiology and the evaluation of potential implications for public
health. In this work, we developed and validated a primer collection for the amplification
and sequencing of the G and F genes of HRSV, using a sequential workflow including
conventional and semi-nested PCR, followed by Sanger sequencing. This strategy not only
allowed for the identification of HRSV linages but also facilitated the detection of mutants
in the HRSV F protein, a critical step towards evaluating and ensuring the continued
efficacy of Nirsevimab or Palivizumab as prophylactic therapies. Our analysis revealed
the presence of the HRSV lineages A.D.2.2.1, A.D.3, B.D.4.1.1, and B.D.E.1, corresponding
to the globally circulating lineages during the study period (years 2019 and 2022). No
previously described mutations in the F protein that confer resistance to Palivizumab and
Nirsevimab were found. However, continuous monitoring of HRSV genotypes is crucial to
promptly identifying resistant viruses, considering their potential impact on public health.
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1. Introduction

Human Respiratory Syncytial Virus (HRSV) is one of the most common viral respira-
tory pathogens worldwide, affecting infants, young children, older adults, and immuno-
compromised individuals [1,2]. It is a leading cause of hospitalization in children under
2 years old due to bronchiolitis and pneumonia, causing approximately 60,000 hospital
deaths globally each year in children under 5 years old [3].
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HRSV is a single-stranded negative-sense RNA virus that belongs to the Pneumoviri-
dae family and genus Orthopneumovirus [4]. Its genome is approximately 15.2 Kb in length
and is organized into 10 genes that encode 11 viral proteins, consisting of 2 non-structural
and 9 structural proteins. The molecular epidemiology of HRSV is quite complex due
to its rapid genetic changes, leading to the emergence of numerous genotypes grouped
into two main antigenic groups: subgroups A (HRSV-A) and B (HRSV-B), which circulate
in different seasons and geographical regions [5,6]. The sequence of the G gene or its
second hypervariable region has been used in numerous epidemiological and evolution-
ary studies [1,3]. However, some authors highlight that analyzing this region may not
always be the best approach, since in some cases it might not distinguish whether two
isolates belong to the same lineage or not [1]. Unlike the G protein, the sequences of
the F ectodomains differ only by ~5% between HRSV-A and HRSV-B, rendering this an
interesting target region for the development of prophylactic tools against HRSV such as
the monoclonal antibodies Palivizumab and Nirsevimab [2,3]. Considerable effort has been
made to classify HRSV genotypes below the subgroup level [1,7-11]. However, some of
the traditional amplification strategies may have shown some challenges due to different
amplification efficiencies for one subgroup over another due to sequence variability and
dissimilar melting temperatures (Tm) of amplification primers, which can compromise both
specificity and yield [12-15]. Very recently, the HRSV Genotyping Consensus Consortium
(RGCC) proposed a new standardized system for the phylogenetic classification of the
different HRSV genotypes, applicable to both complete and partial genomes [16]. This
classification is important not only for taxonomic purposes but also to better understand the
epidemiology and therefore the implementation of therapeutic and preventive strategies
for this virus [1].

In recent years, there has been a growing interest in the molecular epidemiology and
phylogenetic characterization of HRSV, particularly in low- and middle- income countries
(LIMC), to monitor global viral evolution and identify prevailing genotypes [17-20]. How-
ever, such efforts are often hindered by the high mutation rate of HRSV and by older or
poorly preserved clinical specimens. In these cases, whole-genome sequencing may be
impractical due to the degradation of nucleic acids. In this context, a modular amplification
strategy employing a flexible combination of PCR and sequencing primers that target
critical genomic regions, while still covering the highly divergent HRSV sequences in
the databases, can serve as a viable alternative. This approach enables the generation of
amplicons of varying lengths, increasing the likelihood of successful amplification and
sequencing from degraded or low-quality samples.

In Cabo Verde, Acute Respiratory Infection (ARI) caused by various viral pathogens,
including HRSV, was the most commonly reported clinical condition in children under
5 years of age between 2014 and 2020 and the fourth leading cause of mortality in this age
group [21,22]. Two recent studies by Correia et al. [23,24] indicated that HRSV is one of the
primary etiological agents causing ARI in children under 5 years old in Cabo Verde.

The aim of this study was to design and validate a primer set for the amplification
and sequencing of the G and F genes of HRSV. These primers were evaluated using clinical
samples obtained from pediatric patients (<5 years old) presenting with acute respiratory
infections and seeking hospital care in Cabo Verde during 2019 and 2022, in which HRSV
had been previously detected. A sequential workflow involving conventional PCR, semi-
nested PCR (as required), and Sanger sequencing of the G and F gene segments was
employed. This strategy facilitated the genotypic characterization of circulating HRSV
strains in Cabo Verde. This approach also enabled the detection of monoclonal antibody-
resistant mutants (MARM) in the population, an important step towards monitoring the
effectiveness of prophylactic therapies targeting the HRSV F protein [25].
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2. Materials and Methods
2.1. Patient Samples

The clinical samples used in the present work were obtained from a study conducted
with pediatric patients from Cabo Verde in 2019 and 2022 [23,24], in which the presence
of HRSV virus was detected, and the viral subgroup was identified, using real-time PCR
with TagMan probes coupled with a prior reverse transcription (real-time RT-PCR) [26].
The samples were collected in the months of January, May, and November of 2019 and
2022 from children under 5 years of age who presented at the pediatric emergency depart-
ment at University Hospital Dr. Agostinho Neto (UHAN) in Praia, Santiago Island, Cabo
Verde, with suspected acute respiratory infection (ARI) identified by clinicians. Children
were included in this study only after their guardians or parents were provided with a
detailed explanation of the study’s purpose and informed consent was obtained. The
exclusion/inclusion criteria for this study were described in Fitzner et al. [27] and our
previous manuscripts [23,24]. Briefly, only children under 5 years of age, of both sexes,
who exhibited at least three typical symptoms of ARI (nasal obstruction, cough, headache,
chest pain, difficulty breathing, conjunctivitis, and/or fever >38 °C) with symptom onset
3-7 days before seeking medical attention and without any treatment for ARI were invited
to this study. Children with severe illnesses and those in critical or terminal conditions
were excluded from this study. The study was approved by the National Ethics Committee
for Health Research of Cabo Verde (CNEPS, Resolution 72/2018).

The specimens consisted of nasopharyngeal swabs (NPS) collected in Viral Transport
Medium (VTM) (Delta Lab, Barcelona, Spain) and stored at —80 °C until their transport to
Spain. Transport was performed at 4 °C, and upon arrival to the Instituto Universitario de
Enfermedades Tropicales y Salud Publica de Canarias, samples were returned to —80 °C.
Seven NPS containing the HRSV-A subgroup, all from 2019, and another ten samples of the
HRSV-B subgroup, nine of them collected during the 2022 sampling period, were analyzed.

2.2. RNA Purification and Reverse-Transcription (RT)

Viral RNA was purified using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden,
Germany), following the manufacturer’s instructions. RNA was recovered from the spin
column in 60 pL of elution buffer. The Transcriptor First Strand cDNA Synthesis Kit (Roche,
Basel, Switzerland) was used to obtain complementary DNA (cDNA) from 11 pL of total
RNA samples, using random hexamers as primers. The RNA /primer mix was incubated
at 65 °C for 10 min and then quickly transferred to ice. The RT reactions (20 uL) were
incubated in a thermal cycler (ProFlex PCR System; Thermo Fisher Scientific, Waltham,
MA, USA) with the following program: 25 °C for 10 min; 55 °C for 30 min; 85 °C for 5 min.
The cDNA samples were diluted to a final volume of 40 pL using 10 mM Tris-HCI, pH 8.0.

2.3. Primer Design

Two reference sequences of the viral genome [8], one from the HRSV-A subgroup
(Id. NC_038235.1) and another from the HRSV-B subgroup (Id. NC_001781.1), were
selected as starting points for primer design. These sequences were downloaded from
GenBank (NCBI) and aligned using the MEGA v11 software [28]. Highly conserved regions
in the viral genome, specifically in the G and F genes, were identified through visual
inspection of the alignment. The sequences of these conserved regions, including some
variable positions, were evaluated as potential primer binding sites using the Primer
BLAST (https:/ /www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on 4 June 2025))
tool from NCBI against the collection of complete HRSV genomes. This analysis allowed
for the identification of additional variable positions among the sequences available in
the GenBank.
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The most common nucleotide variants in the conserved regions were considered for de-
signing the set of primers (Table 1). This design was carried out using Gene Runner software
v 6.5 (Hastings Software Inc., Hasting, NY, USA), avoiding too-stable secondary structures
(AG < —5.3). The melting temperature (Tm) of the oligonucleotides was set to around
60 °C, calculated as the average of estimates from three different computational tools: Oligo
Calc [29], OligoAnalyzer™ (https:/ /eu.idtdna.com/pages/tools/oligoanalyzer; accessed
on 25 January 2024) and Gene Runner. Lastly, the primers designed for DNA amplification
were tested using Primer BLAST (NCBI) against the human genome reference sequence
and the collection of human RNA reference sequences to predict nonspecific amplifications.

Table 1. Oligonucleotides used as primers.

Concentration
a b . o C

Name Sequence Purpose Amplicon Tm (°C) (uM) in PCR
G-f ARAAGACCTGGGATACTCTYAATC  PCR G 59.0-62.0 04

Gr GGATYGGCAACTCCATKGTTATTT ggg/ semi-nested o - hg o0 04

Gn-f CAYTTTGAAGTGTTCAAYTTYGTDCC  Semi-nested PCR  Gn 61.6-643 2

Gs-f CWRTTYTGGCAATGATAATCTCAAC  Sequencing G 578-614 —

Ge-r GTTATTTGCCCCAGAKTTRATTTYG ~ Sequencing Gn 62.0-634 —

F-f CAATCRACATGTAGTGCAGTTAGC ggg/ semi-nested  p g 60.0-614 02

For GAGCTGCTTAYRTCTGTTTTTGA PCR F 60.2 04

Fner GGTAATGTYAAACTGTTCATWGTGTCAC Semi-nested PCR ~ Fn 633-639 0.6

Fs-f GCAGTTAGCARAGGYTATYTKAGTG  Sequencing F/Fn  607-62.8 —

2 f: forward; r: reverse. The F-r primer is a slightly modified version of another one taken from the literature
[15]. B Degenerated positions are highlighted inbold: D=A, ToG K=GoT,R=AoG W=A0oT,Y=Co
T. Underlined positions involve mismatches with the target sequence in one of the HRSV subgroups. ¢ Melting
temperature range considering the vast majority of available HRSV genome sequences.

The target sites for all primers in the HRSV genome are shown in Figure 1. The
G amplicon is delimited by the G-f/G-r primer pair, and it spans 95.4% of the G gene
coding region, from nucleotide 42 to the stop codon. The F amplicon is defined by the
F-f/F-r primer pair, covering 64.6% of the F gene coding region, from positions 100 to
1214. When necessary, a semi-nested PCR was performed using the primer pairs Gn-f/G-
r (Gn amplicon), targeting the second hypervariable region of the G gene, or F-f/Fn-r
(Fn amplicon).

G amplicon F amplicon
G-f (950-952 bp) G-r F-f (1115 bp) F-r
: Gn amplicon : Fn amplicon i
; Gn-f (500-503 bp): (1028 bp) Fn-r
Gs-f Gs-r Fs-f

D Gene start I Coding region I Gene end == Intergenic region

Figure 1. Binding sites in the HRSV genome for the designed primers. Primers are represented as
arrows. Amplicon sizes in base pairs, according to the reference genomes for HRSV-A (NC_038235.1)
and HRSV-B (NC_001781.1) subgroups, are shown in brackets.
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2.4. Polymerase Chain Reaction (PCR)

c¢DNA amplification assays by PCR were carried out in a final reaction volume of 20 uL
containing the following: 5 pL of DNA sample; 1 x reaction buffer (Thermo Fisher Scientific,
Waltham, MA, USA); the 4 dNTPs at 0.2 mM each; forward and reverse primers at different
concentrations depending on the fragment to be amplified (Table 1); 0.4 puL of Phire Hot
Start Il DNA Polymerase (Thermo Fisher Scientific, Waltham, MA, USA) and molecular
biology-grade water. In the case of semi-nested PCR (Gn and Fn amplicons), a 1/10 dilution
of the first PCR product after 35 amplification cycles was used as a DNA template.

The thermal profile for DNA amplification was as follows: initial denaturation at 98 °C
for 30 s; 35/40 amplification cycles (15 for semi-nested PCR) with denaturation at 98 °C
for 10 s, primer annealing at 55 °C for 10 s, and extension at 72 °C for 20 s (10 s with Gn
amplicon); final extension at 72 °C for 20 s.

2.5. DNA Electrophoresis

The specificity and yield of the PCRs were verified by electrophoresis in 2% agarose
gels with 1x TBE buffer, applying a constant voltage of 75V for 1 h. The molecular
weight marker used was PeqGOLD DNA Ladder Mix (VWR, Radnor, PA, USA). The gels
were stained with a GelRed® 3x solution (Biotium, Fremont, CA, USA) for 30 min and
photographed with the ChemiDoc XRS+™ imaging system (BioRad, Hercules, CA, USA).

2.6. Amplicon Sequencing

Excess of primers and dNTPs after PCR were removed by enzymatic treatment (Ex-
oCleanUp FAST; VWR, Radnor, PA, USA). Cleaned amplicons were sent to an external
service (Macrogen, Madrid, Spain) for automated Sanger sequencing, along with the corre-
sponding internal sequencing primer (Table 1).

2.7. DNA Sequence Analysis

Sequencing electropherograms were visualized with MEGA v11 software [28]. This
program was also used for nucleotide and amino acid sequences analysis, including phylo-
genetics inferences. These analyses were carried out separately for each HRSV subgroup.

An initial alignment of our nucleotide sequences from Cabo Verde with reference
sequences for HRSV-A (NC_038235.1 and PP109421.1) and HRSV-B (NC_001781.1 and
OP975389.1) was performed and subsequently translated into amino acid sequences with
the standard genetic code. This allowed the identification of the amino acid signatures in
the G and F protein that distinguish different lineages according to the RGCC proposal [16].
Additionally, we examined the sequence of the F protein, looking for mutations in the
antibody binding sites that could confer antibody resistance.

Phylogenetic analysis of HVRS gene G was performed using one representative se-
quence from each lineage proposed by RGCC and the sequences obtained from the Cabo
Verde samples [16]. After alignment, the ends were trimmed and maximum likelihood
phylogenetic trees with 1000 standard bootstrap replicates were constructed. The selection
of the most suitable nucleotide substitution models was performed with MEGA11 software
according to the Bayesian Information Criterion (BIC). The TN93 + G was the most suitable
model for HRSV-A, and TN93 + I for HRSV-B. Phylogenetic trees were visualized with
Figtree v1.4.4 [30].

3. Results
3.1. Performance of the Designed Primers

The primers were used sequentially on all samples until amplicons of adequate quality
and quantity were obtained for sequencing (following the flowchart included as Sup-
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plementary Figure S1). Initially, we tested G-f/G-r and F-f/F-r primer pairs with the
17 clinical samples, applying 35 cycles of PCR. In these conditions, good amplification
signals (Figure 2) were obtained for G and F amplicons with 33% and 50% of the sam-
ples, respectively. Next, a second test with 40 amplification cycles was performed with
those samples for which no amplification or low amplification yields were obtained in
the previous PCR assays. Together, PCRs with 35 or 40 cycles provided enough quantity
of amplification products with 83% of the samples for both amplicons. The remaining
samples could be incorporated into the molecular analysis as Gn and Fn amplicons after
performing semi-nested PCR (Figure 2). It is noteworthy that G and Gn amplicons showed
a slightly larger size than predicted (around 50 bp, as observed in the agarose gel), based
on the reference sequences for HRSV-A and HRSV-B (Figure 1).

Amplicon G Gn F Fn G Gn F Fn
HRSVsubgroups A B A B A B A B C-

2

Figure 2. RT-PCR assays for G, Gn, F, and Fn amplicons with samples representing the two HRSV
subgroups, analyzed by agarose gel electrophoresis. Results shown for G and F amplicons were
obtained with 35 amplification cycles, using sample 110 for HRSV-A and sample 30 for HRSV-B as
example. The arrows indicate the size in base pairs of two bands of the molecular weight (MW)
marker. C—: negative controls.

Despite non-specific amplification products being observed with some samples
(Figure 2), the use of internal primers allowed us to obtain good-quality sequencing elec-
tropherograms for all of them.

3.2. Analysis of HRSV Sequences Detected in Cabo Verde

Sequence analysis revealed that the G gene in HRSV samples from Cabo Verde is
affected by a duplication of 72 nt (HRSV-A) or 60 nt (HRSV-B), which explains the size
differences of the G and Gn amplicons compared to the reference genomes (Figures 1 and 2).
These duplications were first detected in Ontario (Canada, 2010; genotype ON1 of HRSV-
A) [31] and Buenos Aires (Argentina, 1999; genotype BA of HRSV-B) [32] and have since
become predominant in successive HRSV epidemics. All samples analyzed from 2019
correspond to HRSV-A [23] and those from 2022 mostly correspond to HRSV-B [24].

The phylogenetic analysis allowed us to assign most of the nucleotide sequences from
Cabo Verde to a HRSV lineage proposed by the RGCC. Four of our HRSV-A sequences
clustered with lineage A.D.3, while one clustered with lineage A.D.2.2.1 (Figure 3, left).
Two nucleotide sequences from HRSV-A (samples 79 and 81) were not included in the
alignment because the sequence electropherograms had short unreadable regions, probably
due to heterogeneity in the corresponding amplicons. On the other hand, for HRSV-B,
eight sequences clustered with lineage B.D.E.1 (Figure 3, right). The HRSV-B tree presented
polytomies that made it difficult to infer the phylogenetic affinity of the sequences ob-
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HRSV-A

A.1. (MG642060)

tained from samples 80 and 98 with a specific HRSV-B lineage, the closest being B.D.4.1.
or B.D.4.1.1. The polytomies do not allow us to distinguish the branching order of cer-
tain linages, suggesting that analysis of complete genomes is required to obtain a good
resolution of the phylogeny (Figure 3).

AD.1.2.(0M857155)
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A2.1.1. (KJ627649) HRSV-B

B8.1.(MG642078)

20

Figure 3. HRSV-A and HRSV-B maximum-likelihood phylogenetic tree. Color boxes highlight the
positions of HRSV sequences from Cabo Verde and the nearest lineage.

In order to more accurately identify the lineages of the HRSV sequences from Cabo
Verde, we investigated amino acid signatures according to the HRSV genotype classification
system proposed by the RGCC [16]. Attending to these signatures, samples of the HRSV-A
subgroup from Cabo Verde mostly correspond to the lineage A.D.3 (six genotypes) and
only one of them to the lineage A.D.2.2.1, whereas six samples of HRSV-B subgroup belong
to the lineage B.D.E.1, as previously revealed by the phylogenetic analysis. However, with
this new analysis, amino acid signatures detected in HRSV-B sequences from samples 98
and 80 allowed us to assign them to the lineage B.D.4.1.1 (Table 2 and Supplementary
Table S1).

To suggest a possible origin of the genotypes found in Cabo Verde, the nucleotide
sequences we obtained were compared with those available in GenBank and corresponding
to HRSV samples collected worldwide in the years 2019 and 2022. In this sense, the highest
levels of sequence identity were up to 99.74% for the G gene and 100% for the F gene with
respect to HRSV genotypes mainly from the USA, Germany, and China (Supplementary
Table S1).
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Table 2. HRSV lineages detected in patients from Cabo Verde according to the standards established
by the RGCC [16].

Identified Amino Acid Signatures ?

Subgrou Lineage
group § G Protein F Protein
AD221 Glu224Gly n.a.
HRSV-A ADS3 Thr113lle; Val131Asp; Asn178Gly;
e His258GIn; His266Leu n-a.
B.D4.1.1 Thr288lle Lys191Arg; Ile206Met; GIn209Arg
HRSV-B BDE1 Ser100Gly; Pro214Ser; Pro211Leu; 11e252Thr; Ser190Asn;
A Lys256ASn; [le268Thr; Ser275Pro; His285Tyr Ser211Asn

2 Positions and amino acid substitutions compared to reference genomes for HRSV-A (PP109421.1) and HRSV-B
(OP975389.1). n.a.: not applicable/available.

3.3. Amino Acid Changes in the F Protein

Monoclonal antibodies targeted to one of the six antigenic sites (&, I-V) of the F protein
have been successfully used as a passive immunoprophylactic strategy to prevent severe
HRSV infections in infants [33-35]. The analysis of amino acid substitutions in the fusion
protein revealed that mutations Asn262Ser/Tyr/Asp, Lys272Glu/Asn/Met/GIn/Thr, and
Ser275Phe/Leu, which confer resistance to the neutralization by Palivizumab [36-39], were
not found in the sequences obtained from Cabo Verde samples. However, the mutation
Asn276Ser adjacent to the Palivizumab binding site was found in all our HRSV-A sequences.

Regarding Nirsevimab binding sites, none of the mutations on site II that con-
fer reduced susceptibility to this antibody (Asn67Ile + Asn208Tyr for HRSV-A and
Asn208Ser/Asp, Lys68Asn + Asn201Ser, Lys68Asn + Asn208Ser, Ile64Met + Lys65Glu
or [1e64Thr + Lys68Glu + Ile206Met + GIn209Arg for HRSV-B) were found in the analyzed
sequences [40,41]. However, the mutations Ile206Met and GIn209Arg in the & epitope were
detected in all HRSV-B sequences analyzed, and the substitution Ser211Asn in the same
epitope was observed in 70% of them.

4. Discussion

HRSV has been a longstanding focus for the WHO, with efforts aimed at strength-
ening surveillance—especially among infants and young children—expanding virologic
monitoring to differentiate virus types and identify genetic groups, and improving the un-
derstanding of its epidemiology, particularly in low- and middle-income countries across all
WHO regions [42]. Therefore, monitoring HRSV molecular epidemiology in a low-income
country like Cabo Verde is crucial for guiding effective public health responses, optimizing
resource allocation, and informing vaccine strategies tailored to local viral strains and
transmission dynamics.

In recent years, several partners in Cabo Verde and Spain, including health profession-
als from University Hospital Dr. Agostinho Neto (the main hospital run by the Ministry
of Health of Cabo Verde), have conducted studies to determine the epidemiological and
clinical profile of viral respiratory infections in children under 5 years old [23,24]. However,
these efforts are sometimes hampered by poor preservation of clinical samples, particularly
in low-resource settings, an issue that demands a modular, sequential approach to over-
come nucleic acids degradation or low viral loads. In this context, the aim of this study was
to design and validate a collection of primers for the amplification and sequencing of the G
and F genes of HRSV that allow the identification of HRSV isolates below the subgroup
level, as well as the detection of MARM in the HRSV F protein. Our results indicate that
adjusting PCR conditions, such as sequentially increasing the number of amplification
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cycles and performing semi-nested PCR, was key to improving the reaction’s performance
and to obtaining satisfactory outcomes with the different samples. By adjusting the method
to account for sample quality and/or viral load, high-quality sequence reads were obtained,
enabling lineage determination and providing sufficient data for monitoring the emergence
of MARMs.

Given that the nasopharyngeal samples used in this study were collected in Cabo Verde
in 2019 and 2022, molecular analysis faced another challenge due to the high mutation rate
of this RNA virus, which may render some PCR strategies unsuitable for genotyping more
recent isolates. This new primer set was specifically designed to span both older reference
genotypes and more recent ones, incorporating degenerate bases and intentional mis-
matches to enable amplification of both subgroups with similar efficiency, paying attention
to sequence variability among those available in GenBank. Although the designed primers
worked relatively well with old samples—from 2019 and 2022—experience indicates that
the genetic material is best preserved as cDNA, so it is recommended to purify viral RNA
and perform reverse transcription reactions as soon as possible after sample reception.

Even though several authors recommend the use of complete HRSV genomes for
better lineage assignment and monitoring of amino acid changes, other authors indicate
that partial genomes containing the G and F genes can be used because they exhibit a robust
phylogenetic signal due to surface glycoproteins that are likely under selection pressure
from antibody-mediated immunity [16]. Consistent with this perspective, the present study
analyses the G and F proteins to identify the HRSV lineages circulating in Cabo Verde
during 2019 and 2022 based on amino acid signature. In 2019, HRSV-A lineages were
more prevalent globally than HRSV-B, including lineage A.D.2.2.1, which has not been
observed in subsequent years, and lineage A.D.3—both of which were identified in our
samples. In 2022, lineage B.D.E.1 was the most frequently detected globally among both
HRSV subgroups, and, along with B.D.4.1.1, was also found in the Cabo Verdean samples.

The recent introduction of novel prophylactic strategies in some countries—such as
monoclonal antibodies targeting specific epitopes of the HRSV F protein—underscores
the importance of closely monitoring mutations in these regions that may compromise
therapeutic efficacy. Although neither Palivizumab nor Nirsevimab are currently employed
in Cabo Verde, the country’s socio-economic context, characterized by high migration flows
from regions including West Africa, Portugal, Italy, Brazil, the United States and Asia,
as well as a substantial foreign resident population of approximately 11,000 individuals,
demands vigilance in order to detect the potential emergence of antibody-resistant viral
variants [43,44]. Focusing on amino acid substitutions of interest in the fusion protein, the
amino acid at position 276, adjacent to the Palivizumab binding site, is generally asparagine
in HRSV-A and serine in HRSV-B [45,46]. The Asn276Ser mutation in the F protein of
HRSV-A was first reported in 2007 and was found in all our HRSV-A sequences from Cabo
Verde. Although it does not generate resistance to Palivizumab by itself [37,46], amino
acid 276 is thought to be susceptible to selection pressure by the prophylactic antibody,
considering that the binding capacity of Palivizumab may be completely lost when, after
the Asn276Ser mutation, a second amino acid change is introduced at the site recognized
by the antibody. Hence, it is considered as the first amino acid mutation inducing MARM,
highlighting the need to monitor the local evolution of the HRSV F gene [37,45,46].

Regarding the mutations in the & epitope detected in all the HRSV-B sequences,
Ile206Met mutation alone reduces the neutralization capacity of Nirsevimab 5-fold, but it
usually occurs together with the GIn209Arg mutation, and this combination shows greater
susceptibility to neutralization by this monoclonal antibody [47,48]. In conclusion, the
combination of mutations Ile206Met + GIn209Arg in the Nirsevimab binding site found
in our sequences does not affect the susceptibility of the virus to neutralization by this
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drug [49]. Given that HRSV is a single-stranded RNA virus with a high mutation rate,
rapid genetic changes might be expected to arise upon extensive use of Nirsevimab or
Palivizumab. This, again, highlights the importance of closely monitoring circulating HRSV
genotypes in order to detect early the emergence of resistant viruses to this drug, given the
implications that this would have for public health.

Despite the valuable information obtained in this study, there are some limitations
that deserve consideration. First, the study was conducted over a three-month period over
two years and only included children attending the emergency department for ARI, so
the limited sample size restricts the ability to draw conclusions for the broader population.
Second, our methodology does not allow for complete sequencing of the viral genome,
which may result in the loss of some relevant epidemiological information.

In conclusion, this work developed and validated a primer collection for the amplifica-
tion and sequencing of the G and F genes of HRSV, enabling the genotypic characterization
of viral strains circulating in Cabo Verde. Using clinical samples from pediatric patients
under five years of age with acute respiratory infections collected in 2019 and 2022, the
study employed a sequential workflow including conventional and semi-nested PCR, fol-
lowed by Sanger sequencing. This strategy not only allowed for the identification of HRSV
linages but also facilitated the detection of mutations in the HRSV F protein, critical infor-
mation for evaluating and ensuring the continued efficacy of Nirsevimab or Palivizumab
as prophylactic therapies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ tropicalmed10060160/s1, Table S1: Sequence identity of HRSV
lineages detected in Cabo Verde compared with Global HRSV surveys in 2019 and 2022; Figure S1:
Algorithm for genetic analysis of HRSV samples. This figure presents a detailed flowchart outlining
the steps involved in the genetic analysis of Human Respiratory Syncytial Virus (HRSV) samples.
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